
Techniques for delayed binding of monitoring mechanisms
to application-specific instrumentation points

Jeffrey Vetter�

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, USA, 61801

Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA, 30332

Abstract

Online interaction with computer systems and applica-
tions allows developers to monitor, experiment with, and
debug long-running, resource-intensive applications at run-
time. Traditionally, developers statically bind a monitor-
ing mechanism to each application-specific instrumentation
point. This approach has shortcomings for online, inter-
active monitoring. Namely, static binding limits portability
among monitoring systems; it may mismatch monitoring
mechanisms to interactive requests for monitoring data;
and, predictions for the performance and execution paths
of instrumentation for static bindings are left to the devel-
oper. To address these concerns, we have created a new
technique called monitoring assertions that allows moni-
toring systems to delay binding of monitoring mechanisms
to application-specific instrumentation points until runtime.
Our empirical results show that we can alter the perfor-
mance of both the application and the monitoring system by
removing static binding requirement of application-specific
monitoring systems.

1. Interactive monitoring systems

Interactive monitoring systems permit users to interact
with the monitoring system during the execution of the
target application. Users can enable, disable, and recon-
figure the monitoring system to suit their exploration of
the application [19, 17, 9, 6]. These interactive monitor-
ing systems complement other forms of monitoring that use
post-mortem analysis [25, 18, 16, 2, 3], but they share with
such systems the need to analyze and display monitoring
data [20, 11, 12, 4]. The interactive monitoring systems

�NASA financially supported Vetter with a Graduate Student Re-
searchers Program Fellowship while he was a Ph.D. candidate at Geor-
gia Tech. This work was also funded, in part, by NSF equipment grants
CDA-9501637, CDA-9422033, and ECS-9411846.

investigated by our group are those that permit end-users to
capture application-specific information from targets, such
as the position and velocity of molecules, or values of a so-
lution matrix in a multi-grid solver. Some online monitoring
systems, which include Paradyn, Quartz, and EEL [17, 2, 3],
use modified compilers or executable editing to interrogate
the application for performance-relevant information. How-
ever, we do not employ these techniques because they are
limited in the types of information they can provide to the
user [19], especially when executables are highly-optimized
[7, 24]. Alternatively, users of application-specific mon-
itoring systems annotate their application source code to
supplement information available from these other moni-
toring methods. Our particular form of application-specific
monitoring, called event-based monitoring [13, 4, 14], pro-
duces streams of events that represent observed application
state; the user analyzes these streams judge target system
behavior.
Motivation. Application instrumentation is a primary
component of any application-specific monitoring system.
Across a wide variety of systems [23, 9], instrumentation
support may be described as follows. (1) The developer
chooses basic instrumentation mechanisms and annotates
the source code. (2) At runtime, the monitoring system re-
ceives data from this instrumentation. (3) The monitoring
server has limited runtime control over the instrumentation
such that it typically relies on instrumentation placement
to produce interesting data at appropriate rates. This static
binding of monitoring mechanisms to instrumentationpoints
is unacceptable for interactive monitoring systems because it
is not easy to reasonably predict the interactor’s exploration
scenario when deciding upon instrumentation mechanisms.
The developer must also predict the interactor’s exploration
scenario to help maintain consistent (or meaningful) data
views of the target application.

This paper introduces monitoring assertions that allow
developers to instrument applications without forcing them
to predict how monitoring data might later be used and
without forcing them to judge a-priori which mechanisms

are most appropriate. These assertions annotate what ap-
plication data is available and when it is accessible to the
monitoring system.
Related work. Monitoring assertions are code annota-
tions; we propose these assertions could be used by any
monitoring system in place of their application-specific in-
strumentation. Then, the monitoring system would query
and control the instrumentation using the ’monitoring as-
sertions’ library API. Our earlier annotated bibliography
provides many references to these instrumentation systems
[10].

Tools like gprof[8] and Quartz[2] provide the user with
valuable information about execution frequency; they as-
sign elapsed time to static, syntactic units, such as pro-
cedures or statements. Additional work by Ammons and
colleagues [1] extends this work to use flow and context in-
formation for performance counters. Paradyn [17] provides
similar control-based application performance information;
it delays the insertion of instrumentation until requested
by the interactor, whether it is a query driven by a human
or by Paradyn’s performance consultant. These systems
[8, 2, 1, 17] rely on information stored within the executable
by the compiler—either the instrumentation itself or instru-
mentation targets such as procedure entry points. In many
cases, this limitation prohibits the use of executable editing
to observe application-specific data. An example of this
shortcoming is described in x3.

Application-specific monitoring systems such as
Falcon[9] and Autopilot [21] provide their own instru-
mentation libraries and instrumentation controls. Develop-
ers insert this instrumentation into their application source
code and then, capture and analyze data produced by the
instrumentation at runtime. Unfortunately, most every
application-specific monitoring system has its own non-
portable instrumentation library. In this respect, monitor-
ing assertions could provide a common instrumentation tool
for both application developers and tool developers. While
these earlier instrumentation techniques propose various in-
strumentation mechanisms [19, 5, 16, 23], they focus pri-
marily on the design of the monitoring system itself.
Research contributions. The novel idea of this work is
to generalize instrumentation so that the binding of specific
monitoring mechanisms to instrumentation points in target
applications is delayed until more is known about the ex-
pected use of the monitoring information (i.e., at runtime).
Note that executable editing allows the monitoring system
to delay binding until runtime; however, it then can only
bind to a limited scope of application attributes, such as
procedure entry points. Whereas, monitoring assertions al-
lows developers to introduce as many application-specific
binding points as necessary. (1) Monitoring assertions
capture the desired properties of application-specific instru-
mentation of what data to monitor and when to monitor that

data without the requirement of static binding to particular
monitoring mechanisms. (2) Instrumentation signatures
result in our system’s ability to predict monitoringoverheads
and thereby enable runtime choices in instrumentation bind-
ings based on observed patterns in instrumentation flow and
frequencies. These signatures are derived from reference
executions of instrumented applications. (3) Empirical eval-
uations of monitoring assertions and instrumentation signa-
tures demonstrate the utilityof delaying mechanism binding
until runtime.
Sample applications. Two applications demonstrate our
ideas. Heat diffusion is a 27-point, 3D-stencil, time-stepped
simulation [22] implemented with kernel-level threads for
SMP platforms. This simulation exhibits nearest neigh-
bor sharing common to many simulations of physical sys-
tems. A more complex example is provided by the Splash 2
OCEAN benchmark. The Ocean benchmark simulates eddy
and boundary currents in a cuboidal ocean basin. The appli-
cation uses finite differencing CFD with a regular grid. The
algorithm uses a red-black Gauss-Seidel multi-gridequation
solver; each time-step of the simulation involves setting up
and solving a set of spatial partial differential equations.
Experiment platform. The experimental platform is a net-
work of 4 two-processor Sun Ultra 2 Model 2148s (148
MHz UltraSPARC CPU). Each system has 128MB of main
memory and they run Solaris 2.5.1. Although this work
focuses on shared memory architectures, we are not aware
of any fundamental design restrictions such that monitoring
assertions could not work in a message passing environment.
Paper outline. x2 reviews application instrumentation in-
cluding various mechanisms and characteristics. x3 and x4
explain the technique of monitoring assertions and instru-
mentation signatures, respectively. x5 reveals our conclud-
ing thoughts and some future research issues.

2. Background: application instrumentation

Typical online monitoring systems have four basic com-
ponents as illustrated in Fig. 1: system software, application,
monitoring server, and interactor. Systems that broadly fit
this model include Paradyn [17], Falcon [9], Magellan [22],
Avatar [20], Vista [23], and various debuggers. We assume
no special operating system, special compilers, or hardware.
The interactor controls the server; it specifically provides
user interface and visualization capabilities. The server is
generally a separate process or thread that communicates
with the application via shared memory or IPC.

Application-specific instrumentation is represented as
software statements added to the target application [19, 5,
16]. This instrumentation gathers data about the applica-
tion’s execution, packages it, and sends it to some higher-
level monitoringsystem. This instrumentationhas two basic
objectives: (1) instrumentation identifies which application

data

Interactor supervises
monitoring of application

Monitoring server polls
incoming interactor
commands as well as

data

Certain monitoring
mechanisms may

buffered monitoringinstrumentation

Threads encounter
instrumentation points

not require

Monitoirng data is
buffered

and generate data
and analyzes monitoring

System Software

App Data

Application

Monitoring server

Interactor

Monitoring system

Storage

Figure 1. Typical model for an interactive
monitoring system.

data the monitoring system can observe; and, (2) instru-
mentation identifies when the monitoring server can safely
observe application data; thereby addressing both the valid-
ity of the each observed data item as well as the consistency
of multiple data items.

The following code illustrates application-specific moni-
toring instrumentation for the Magellan computational steer-
ing system, which supports interactive monitoring. This
code is taken from the Splash 2 Ocean benchmark.

AS_RegisterObject(steer, "residual norm",
&multi->err_multi, AST_DOUBLE, 0, &sResNorm);

AS_Sense(sResNorm);

During initialization, the Magellan instrumentation reg-
isters target data using the callAS_RegisterObjectand
providing the name, type, size, and address to the runtime
Magellan server. Next, a sensor is placed in the loop us-
ing AS_Sense to provide controlled access to these regis-
tered objects. Magellan need only enable these AS_Sense
instrumentation points to receive periodic updates for this
application variable.

To reason more specifically about instrumentationpoints,
we now introduce some terminology. A static instrumen-
tation point is uniquely identified by its location within the
source code: a filename and line number. IPfile;line de-
scribes this static instrumentation point. For convenience,
we collapse IPfile;line into a unique identifier: sid.

At runtime, however, this static description does not pro-
vide enough information to the monitoring system. In one
scenario, multiple threads can execute the same instrumen-
tation point, so the instrumentation point must also provide
a thread (or process) identifier tid and context (or stack
frame) information–sf–for scoping and recursion. Without

additional compiler support, we currently do not explore use
of sf to extend sid. Adding tid, a runtime instrumenta-
tion point (rid) is uniquely identified by sid and tid; or,
f(sid; tid)! rid.

In addition to the information generated by instrumen-
tation points, the monitoring system may also accumulate
and observe information about the instrumentation itself.
The monitoring system tracks the number of times instru-
mentation points are encountered by application threads as
well as the number of times data items are actually observed
by each instrumentation point. A hit occurs when an in-
strumentation point is encountered by an application thread.
Hits(sid) gives the number of total hits on sid by any thread
while Hits(sid; tid) gives the number of total hits on sid
by thread tid. For example, every time any thread executes
the AS_Sense instrumentation point, it counts as one hit.
A capture is a hit where the instrumentation point observes
application state and forwards it to the monitoring system.
Captures(sid) gives the number of total captures on sid
by any thread while Captures(sid; tid) gives the number
of total captures on sid by thread tid. All captures are
necessarily hits; however, hits are not necessarily captures.

An event �eid is a quad-tuple containing an event class
descriptor (class), a timestamp (TS), a location (loc) and
state (S): �eid = (class; TS; loc; S). A unique event identi-
fier (eid) identifies each event. T imestamp(�eid) furnishes
the timestamp of the event �eid. The instrumentation point
generates the event timestamp when it creates the event.
Loc(�eid) furnishes the originating location of �eid which
includes the tid as well as sid. State(�eid) allows the mon-
itoring system to access the event’s state. State sizes vary
for different event classes, so Size(�eid) furnishes the state
size of the event �eid.

2.1. Instrumentation mechanisms

We consider four types of instrumentation mechanisms:
tracing sensors, sampling sensors, snapshot sensors, and
synchronous probes. For these definitions, assume that each
of the mechanisms are enabled and that rid has Hit(rid) =
n.

A tracing sensor installed at rid captures n events �
and forwards each event to the monitoring server via a
FIFO shared buffer. Captures(rid) = Hits(rid) = n.
Fig. 2(a) furnishes the pseudo code for a tracing sensor
instrumentation point. All events generated by a tracing
sensor are consumed by the monitoring server. The appli-
cation thread must contend with the monitoring server for
exclusive access to the FIFO buffer. If the non-blocking
buffer insert fails, then the application must retry the
insert. The buffer insert could fail because either the
FIFO is currently locked or it is full.

A sampling sensor captures (Hits(sid)=!sampling)

trace-sensor (datahandle)
hits++
if enabled
captures++
allocate event
copy datahandle to event
package event
while buffer insert fails

buffer insert event
return

sampling-sensor (datahandle)
hits++
if enabled

if (hit % samplfreq) == 0
captures++
allocate event
copy datahandle to event
package event
while buffer insert fails

buffer insert event
return

snapshot-sensor (datahandle)
hits++
if enabled

captures++
lock shared area
copy datahandle to shared area
update shared area attributes
unlock shared area

return

synch-probe (datahandle)
hits++
if enabled
captures++
mondata = datahandle
barrier (monitor thread)
barrier (monitor thread)

return

(a) tracing (b) sampling (c) snapshot sensor (d) synchronous probe

Figure 2. Monitoring mechanism pseudo-code.

events and forwards these events to the monitoring server
via a FIFO shared buffer. With !sampling > 1,
Captures(rid) � Hits(rid)

!sampling
. A tracing sensor is a sam-

pling sensor where !sampling = 1. Fig. 2(b) outlines the
operation for a sampling sensor. !sampling can change dy-
namically.

Fig. 2(c) defines the operation of a snapshot sensor that
captures n events but stores only one event in a shared loca-
tion instead of placing it in a FIFO buffer. The application
instrumentation overwrites this stored event with the most
recent event. The monitoring server then reads this shared
location to find this event.

A probe directly reads application memory without syn-
chronizing with the application through an instrumentation
point. Original probes[19] have no corresponding rid. The
monitoring system copies the data immediately upon re-
quest. This lack of synchronization limits probe state size to
machine-dependent data sizes. Due to this limitation, we do
not study normal probes in detail; however, we do introduce
synchronous probes as an alternative.

A synchronous probe synchronizes execution of the mon-
itoring server and the application thread at rid. Once the
synchronization occurs, the monitoring server copies �eid
directly from the stalled application. No data is buffered be-
tween the application and the monitoring server. Fig. 2(d)
illustrates the primary differences in operation of a syn-
chronous probe from the previous constructs.

2.2. Instrumentation characteristics

Each of these instrumentation mechanisms have quan-
tifiable impacts on the application and the monitoring sys-
tem including application perturbation, monitoring latency,
potential monitoring frequency, and the consistency of the
monitoring information. We define as a global clock avail-
able to the application, instrumentation points, the monitor-
ing server, and the interactor.

Each rid has a time associated with its execution. In-
strumentation point execution time, ∆Execution(rid) =

stop�start, is the difference in time from the call to the re-
turn of the instrumentation point rid. This ∆Execution(rid)
captures the time the instrumentation waits on mutex locks,
full buffers or other costs.

Small changes in application instruction sequences from
this instrumentation can result in substantial aggregate per-
formance perturbation[15]. We measure this aggregate per-
turbation instead of the execution time of each individual
instrumentation point. Application runtime, �application =

applicationstop � applicationstart , is the runtime of the original ap-
plication without any instrumentation points. Instrumented
application runtime, �instrumented = instrumented

stop �

instrumented
start , is the runtime of the instrumented ap-

plication. Application perturbation, ∆Perturbation =
�instrumented � �application, is the difference in the run-
time of the instrumented application minus the runtime of
the original application. Application perturbation slowdown
is the ratio of instrumented runtime to original application
runtime: �instrumented

�application
. ∆Perturbation is a function instru-

mentation mechanisms used throughout the exploration of
the target application. It is our experience that aggregate
∆Perturbation > 0 and perturbation slowdown is greater
than 1. For our evaluation, we lock the instrumentation
points to one mechanism for each benchmark’s duration.

Tab. 1 details these measurements for two example appli-
cations. Each application used two processors. Optimized
mode used compiler option -O; debug mode using com-
piler option -g; gprof mode used option -xpg -O on the
SUNWspro compiler. Optimized/ma mode is the perfor-
mance of the optimized application with additional moni-
toring assertions instrumentation. As we expected, debug
mode increased the runtimes of each application consider-
ably. Gprof has a aggregate perturbation of 28-33%. Mon-
itoring assertions produced on 1-3% aggregate perturbation
on the target applications. Total hits represents the cumula-
tive sum of all assertion hits during execution of the applica-
tion. We certainly expect a more thoroughly instrumented
version of either application to produce more perturbation;

Application State
Avg

Runtime
(sec)

Total
hits

Ratio

OCEAN Opt 336 - 1
Opt/ma 337 3110 1.01

Opt/gprof 430 - 1.28
Debug 697 - 2.07

Stencil Opt 124 - 1
Opt/ma 128 202 1.03

Opt/gprof 165 - 1.33
Debug 252 - 2.03

Table 1. Application performance under dif-
ferent instrumentation scenarios.

however, this analysis demonstrates that the perturbation
from monitoring assertions is not inherently limiting.

Online monitoring systems obviously require some la-
tency to capture, transport, and analyze their data. This la-
tency is a function of many factors including instrumentation
mechanisms. Here, we are primarily interested in the latency
between the event generation by application instrumentation
and event consumption by the monitoring server. Buffer
management can also alter the latency of the system[9, 23];
we hold buffer parameters constant across our evaluations.

Event latency, ∆eid
Latency = �TS(�eid), is the difference

of the current time from the timestamp on the event �eid as
observed by the monitoring server. Assuming a correct glob-
ally consistent clock with infinite resolution, > TS(�eid)
and ∆eid

Latency > 0.

2.3. Perturbation and latency evaluation

Each of our earlier defined mechanisms have differ-
ent perturbation and latency characteristics. To measure
these characteristics, we have created micro-benchmarks
and then, monitored those micro-benchmarks with the Mag-
ellan system[22]. As the code below illustrates, the bench-
mark is a loop that accesses array with size datasize.

int array[datasize]
start timer
for ITER
do

incr all elements of array
Instrumentation point(array)
delay

done
stop timer

Perturbation is measured by subtracting the wall-clock
time of the uninstrumented loop from the wall-clock time
of the instrumented loop. The monitoring server calculates
latency with each �eid timestamp and the same machine
clock. This clock’s resolution is microseconds.

Figs. 3 and 4 illustrate the clear differences in the pertur-
bation and latency characteristics of tracing sensors, sam-

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06

A
vg

 p
er

tu
rb

at
io

n
(u

se
cs

)

Event size (bytes)

trace
snap

syncp
sample 3

sample 10
sample 30

sample 100

Figure 3. Average perturbation per instru-
mentation point versus event size.

pling sensors (!sampling = 30), snapshot sensors, and syn-
chronous probes. Characteristics such as buffer properties
and interference have been studied by Waheed and asso-
ciates, and Gu and colleagues [23, 9]. We recognize these
issues by assuming a reasonable buffer size and a steady-
state computer system.

From this analysis, we see that all perturbation increases
with data size. Tracing sensors impose the highest pertur-
bation on the application while sampling sensors have the
lowest overall perturbation. However, this sampling sensor
perturbation varies with !sampling . Event latency for trac-
ing and sampling sensors is almost identical regardless of
data size because the underlying data structures are similar.
the latency for synchronous probes and snapshot sensors is
very predictable, increases with data size, and is almost two
orders of magnitude better than either tracing or sampling
sensors.

Given these clear differences, it is best to match the ap-
propriate mechanism to current interactive monitoring re-
quests. Our monitoringassertions allow dynamic binding of
these mechanisms to the appropriate instrumentation points
for each monitoring request. The monitoring system can
choose which mechanism to employ.

3. Monitoring assertions

As in the earlier Magellan example, the instrumentation
mechanisms are bound at compile time. AS_Sense dic-
tates that the mechanism used to monitorsResNorm, etc. is
always a sensor. If the interactive monitoringsystem needs a
different type of mechanism such as a synchronous probe to
minimize latency, then the user would have to re-instrument
the application and recompile.

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06

A
vg

 e
ve

nt
 la

te
nc

y
(u

se
cs

)

Event size (bytes)

trace
snap

syncp
sample 3

sample 10
sample 30

sample 100

Figure 4. Average latency per event versus
event size.

Monitoring assertions help solve this problem by pro-
viding the monitoringsystem with a method for dynamically
binding these mechanisms to the assertions. Monitoring as-
sertions allow the developer to generally instrument their
application by identifying which data is available for mon-
itoring and when this data is observable. They are annota-
tions that a developer adds to source code. So, as a result
of the scenario depicted in the Magellan example, that code
becomes Fig. 5, where mechanisms are replaced by asser-
tions. Developers can also limit the types of mechanisms
that can be used at individual assertions that further limit the
choices available to the monitoring system when selecting
mechanisms.

Given our earlier analysis of different monitoring mecha-
nisms, the following scenario illuminates the advantages of
monitoringassertions over previously-discussed monitoring
instrumentation. In Fig.5, the monitoring system can make
different choices about which monitoring mechanisms to
use at AAA_Access based on interactive requests.

If the user needs to track a variable such as resNorm
with size 8 bytes, then the monitoring system could easily
choose a snapshot sensor because it provides the best per-
turbation (from Fig. 3) with the second best latency of 7
microseconds (see Fig. 4). Synchronous probes provide the
best latency at 8 bytes; however, the latency improvement is
very small and synchronous probe perturbation is higher.

If the user wants to display a larger data item or additional
data items, then the monitoring system must reevaluate its
instrumentation choices. If the user requests the variable
f with size 4112, the monitoring system can choose sam-
pling sensors (!sampling = 30) with the best perturbation.
At large data sizes, the data copying dominates the latency
costs; therefore, all mechanism latencies converge toward a
common latency cost. This fact effectively reduces the mon-

AAA_double(multi->err_multi); /* resNorm */
AAA_int(k); /* level */
while ((!flag1) && (!flag2)) {

/* ...code omitted... */
AAA_Access(multi->err_multi,wu,iter,
k,f,tolerance);}

Figure 5. Splash2 Ocean with monitoring as-
sertions.

itoring system’s choice dimensions to perturbation, which
favors sampling sensors for this example.

Without monitoring assertions, the monitoring system
would be unable to combine interactive monitoring requests
with its knowledge about application instrumentationto pro-
vide these optimized solutions.
Localized application de-optimization. Most large-scale,
high performance applications have thousands of data items
of which only a small portion are useful for monitoring. Us-
ing application-specific knowledge, the developer chooses
which data to make available and when. By placing the mon-
itoring assertions in the code, the developer also chooses
how to localize de-optimizations. Namely, in contrast to de-
optimizations performed when using general debug options
(e.g., -g) provided by compilers, monitoring assertions re-
sult in de-optimizations only for the specific code compo-
nents where they are placed. Monitoring assertions can be
easily disabled with command line switches or preprocessor
directives.

The developer controls the tradeoff between the avail-
ability of monitoring data at runtime and compiler opti-
mizations. If the developer wants access to certain data at
runtime, then such a de-optimization may be acceptable.
In fact, the extraction of such data from highly-optimized
code may be extremely difficult and even misleading[7, 24]
without these local de-optimizations.

3.1. Source code annotations

Monitoring assertions have two different forms: one to
declare data and one to access declared data. An application
first must declare which application-specific data is available
for interactive monitoring; then, at various places throughout
the code, the application allows access to that declared data
via assertions.
Declarations. Declarations provide monitoring assertions
with type and scoping information while limiting the amount
of data items available to the interactor. Compiler support
for declarations would reduce the instrumentation for this
declaration statement to a simple tag on the language vari-
able declaration (e.g., monitor int iter;). Figs. 5
illustrates a declaration sequence for a set of variables. As

in Fig.5, these declarations are currently preprocessor direc-
tives, AAA_int(k), that expand into a procedure call with
parameters for name, type, address, size, thread identifier,
filename and line number:

aaa_decl_data("k", AAA_INT, &k,
sizeof(k), tid, "slave1.c", 689)

The declaration for each name must occur prior to any
access points using that name.

When this call is executed by the application with moni-
toring assertions, it stores this information. Later, this infor-
mation can be written to an instrumentation signatures his-
tory file (see x4). The aaa_decl_data call first checks
name to determine if it is already registered. If name
does not exist, then it creates a table entry and initializes
statistics for that name. If it does exist, then it verifies the
instrumentation location (i.e., line number and file name). If
name has been defined at another instrumentation location,
aaa_decl_data indicates a name collision and does not
register the offending name. If the static instrumentation lo-
cation (sid) verifies, then it checks the thread identifier tid.
If tid exists, then just the statistics are updated. Otherwise,
monitoringassertions creates a new runtime instrumentation
location (rid) and adds this information to the existing static
instrumentation location in the registry.
Access points. Once data has been declared, monitoring
assertions require control flow information about how the
monitoring system can ’safely’ access these data items at
runtime. An assertion tells the monitoring system when the
data is semantically meaningful as defined by the developer
as well as when it is not being accessed by the current thread.
These assertions are currently preprocessor directives that
expand into a procedure call with parameters for thread iden-
tifier, filename, line number and a list of pairs of name and
address. In Fig. 5, AAA Access(multi->err multi,
wu, iter, k, f, tolerance) expands to

aaa_access(tid,"slave1.c",704,
"multi->err_multi", &(multi->err_multi),
"wu", &(wu), ... , NULL);

When this call is executed by the application with monitor-
ing assertions, aaa_access acts like a declaration. The
aaa_access call checks the static instrumentation loca-
tion (sid) to determine if it is already registered. If sid does
not exist, then it creates a table entry and initializes statistics
for that location, else it checks the thread identifier tid as
well as the data items in the list. If tid exists, then only the
statistics are updated. Otherwise, the monitoring assertion
creates a new runtime instrumentation location (rid) and
adds it to the static instrumentation location in the registry.
Essentially, an unlimited number of declared data items can
be listed with each aaa_access call. At each appearance
of a new sid, the system verifies the data items are previ-
ously declared using name to scan the declared data table.
This provides the sid with type and size information.

4. Instrumentation signatures

Instrumentation signatures further augment monitor-
ing assertions by providing a runtime history of an applica-
tion’s instrumentation. These signature files capture three
basic characteristics: declarations, instrumentation points,
and per-thread statistics about the number of hits on each
instrumentation point (i.e., Hits(sid; tid) and Hits(sid)).
The monitoring system can use this information to deter-
mine how to bind mechanisms to access points so that per-
formance is optimized. Signatures are generated when the
target system is executed in reference run mode; signatures
are then used at runtime to determine what data is avail-
able and to help predict which instrumentation points best
satisfy data rates for the interactive requests. Instrumen-
tation signatures do provide information unavailable with
compile-time analysis and executable editing. In general,
instrumentation signatures are a function of the application,
its particular monitoring assertions, input data, and other
system conditions such as the number of threads used by the
application.

A reference run will produce only an initial guess about
the instrumentation signatures value. For the relatively sta-
ble scientific applications considered in our research, this
guess is reasonable and is not subject to frequent changes.
Declarations. The declaration section details an applica-
tion component’s name, location, type, size and its unique
identifier. Declarations provide type and size information to
monitoring assertions.
Instrumentation points. The instrumentation points sec-
tion details all instrumentation points encountered during
the reference run. Each line contains the location of the in-
strumentation point, a unique identifier and all the declared
application components that are available at that instrumen-
tation point. Using this knowledge, an interactive monitor-
ing system can quickly determine what data is available and
at what rates.
Statistics. The statistics section provides frequencies of
execution of each instrumentation point including total hits
Hits(sid) as well as hits per thread Hits(sid; tid)—both
raw and normalized statistics. Using this information, a
monitoring system can choose instrumentation points based
on their expected Hits(sid).

5. Conclusions

We have introduced monitoring assertions and instrumen-
tation signatures as two new techniques to help improve the
efficiency and usability of monitoring systems. Monitoring
assertions generalize application-specific instrumentation so
that monitoring systems can dynamically control the bind-
ing of instrumentation points to monitoring mechanisms.
Dynamic binding and the use of consistency information

can improve application perturbation and monitoring laten-
cies. In addition, instrumentation signatures may be used
to predict the frequencies and performance of instrumenta-
tion. Currently, a C library allows tools to dynamically bind
mechanisms to these assertions.

Compiler integration of monitoring assertions could dras-
tically alter their utility and efficiency. Application-specific
instrumentation usually must supplement information gath-
ered from other compiler-provided sources. If our monitor-
ing assertions were integrated with a compiler, they could
provide the following advantages: (1) use of compile-time
type information to automate the instrumentation process;
(2) integrate data dependency information with monitoring
assertions to rearrange and combine assertions to improve
performance; and, (3) use stack frame information to make
monitoring assertions more precise.

References

[1] G. Ammons, T. Ball, and J. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling.
In Proc. ACM SIGPLAN Programming Language Design
and Implementation (PLDI), 1997.

[2] T. Anderson and E. Lazowska. Quartz: A tool for tuning
parallel program performance. In Proc. 1990 SIGMETRICS
Conf. Measurement and Modeling Computer Systems, pages
115–125, Boston, 1990.

[3] T. Ball and J. Larus. Optimally profiling and tracing pro-
grams. ACM Trans. Programming Languages and Systems,
16(4):1319–60, 1994.

[4] P. Bates. Debugging heterogeneous distributed systems us-
ing event-based models of behavior. ACM Trans. Computer
Systems, 13(1):1–31, 1995.

[5] D. Bhatt. Scalable parallel instrumentation (SPI): an envi-
ronment for developing parallel system instrumentation. In
Proc. Intel Supercomputer Users Group Conf., pages 98–
104, 1994.

[6] D. Brown, S. Hackstadt, A. Malony, B. Mohr, J. Dongarra,
and B. Tourancheau. Program analysis environments for
parallel language systems: the tau environment. In Proc.
Second Workshop on Environments and Tools for Parallel
Scientific Computing, pages 162–71, 1994.

[7] M. Copperman and C. McDowell. A further note on hen-
nessy’s ’symbolic debugging of optimized code’. ACM
Trans.Programming Languagesand Systems, 15(2):357–65,
1993.

[8] S. Graham, P. Kessler, and M. McKusick. Gprof: A call
graph execution profiler. SIGPLAN Notices (SIGPLAN ’82
Symp. Compiler Construction), 17(6):120–126, 1982.

[9] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko,
J. Vetter, and N. Mallavarupu. Falcon: On-line monitor-
ing and steering of large-scale parallel programs. In Proc.
Frontiers of Massively Parallel Computation, 1995.

[10] W. Gu, J. Vetter, and K. Schwan. An annotated bibliog-
raphy of interactive program steering. SIGPLAN Notices,
29(9):140–8, 1994.

[11] S. Hackstadt, A. Malony, L. Bouge, P. Fraigniaud,
A. Mignotte, and Y. Robert. Distributed array query and
visualization for high performance fortran. In Proc. Euro-
Par ’96 Parallel Processing., pages 55–63, 1996.

[12] E. Kraemer and J. Stasko. The visualization of parallel sys-
tems: An overview. Jour. Parallel and Distributed Comput-
ing, 18(2):105–117, 1993.

[13] J. Kundu and J. Cuny. A scalable, visual interface for de-
bugging with event-based behavioral abstraction. In Proc.
Fifth Symp. the Frontiers of Massively Parallel Computation,
pages 472–9, 1995.

[14] A. Malony. Event-based performance perturbation: a case
study. SIGPLAN Notices (Third ACM SIGPLAN Symp. Prin-
ciples and Practice of Parallel Programming), 26(7):201–12,
1991.

[15] A. Malony, D. Reed, and H. Wijshoff. Performance mea-
surement intrusion and perturbation analysis. IEEE Trans.
Parallel and Distributed Systems, 3(4):433–50, 1992.

[16] D. Marinescu, H. Siegel, J. Lumpp, and T. Casavant. Mod-
els for monitoring and debugging tools for parallel and dis-
tributed software. Jour. Parallel and Distributed Computing,
9:171–184, 1990.

[17] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall.
The paradyn parallel performance measurement tool. Com-
puter, 28(11):37–46, 1995.

[18] B. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S.
Lim, and T. Torzewski. IPS-2: The second generation of a
parallel program measurement system. IEEE Trans. Parallel
and Distributed Systems, 1:206–217, 1990.

[19] D. Ogle, K. Schwan, and R. Snodgrass. Application-
dependent dynamic monitoring of distributed and parallel
systems. IEEE Trans. Parallel and Distributed Systems,
4(7):762–778, 1993.

[20] D. Reed, K. Shields, W. Scullin, L. Tavera, and C. Elford.
Virtual reality and parallel systems performance analysis.
Computer, 28(11):57–67, 1995.

[21] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot:
adaptive control of distributed applications. In Proc. Seventh
IEEE Int’l Symp. High Performance Distributed Computing,
1998.

[22] J. Vetter and K. Schwan. High performance computational
steering of physical simulations. In Proc. Int’l Parallel Pro-
cessing Symp., pages 128–132, Geneva, 1997.

[23] A. Waheed and D. Rover. A structured approach to in-
strumentation system development and evaluation. In Proc.
Supercomputing 95, pages 1–1, 1995.

[24] R. Wismuller. Debugging of globally optimized programs
using data flow analysis. SIGPLAN Notices (ACM SIGPLAN
’94 Conf. Programming Language Design and Implementa-
tion), 29(6):278–89, 1994.

[25] J. Yan, E. Hesham, and B. Shriver. Performance tuning with
AIMS-an automated instrumentation and monitoring system
for multicomputers. In Proc. Twenty-Seventh Hawaii Int’l
Conf. System Sciences. Vol.II: Software Technology, pages
625–33, 1994.

